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We study a one-dimensional lattice of anharmonic oscillators with only quartic nearest-neighbor interactions,
in which discrete breathers �DB’s� can be explicitly constructed by an exact separation of their time and space
dependence. Introducing parametric periodic driving, we first show how a variety of such DB’s can be obtained
by selecting spatial profiles from the homoclinic orbits of an invertible map and combining them with initial
conditions chosen from the Poincaré surface of section of a simple Duffing’s equation. Placing then our initial
conditions at the center of the islands of a major resonance, we demonstrate how the corresponding DB can be
stabilized by varying the amplitude of the driving. We thus discover around elliptic points a large region of
quasiperiodic breathers, which are stable for very long times. Starting with initial conditions close to the
elliptic point at the origin, we find that as we approach the main chaotic layer, a quasiperiodic breather either
destabilizes by delocalization or turns into a chaotic breather, with an evidently broadbanded Fourier spectrum
before it collapses. For some breather profiles stable quasiperiodic breathers exist all the way to the separatrix
of the Duffing equation, indicating the presence of large regions of tori around the DB solution in the multi-
dimensional phase space. We argue that these strong localization phenomena are due to the absence of phonon
resonances, as there are no linear dispersion terms in our lattices. We also show, however, that these phenom-
ena persist in more realistic physical models, in which weak linear dispersion is included in the equations of
motion, with a sufficiently small coefficient.
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I. INTRODUCTION

Localized oscillations in one-dimensional Hamiltonian
lattices have been known to exist for a long time �1�. It was
not, however, until their existence was rigorously proved in
�2� that an explosive amount of work began to be published
concerning their properties, structure, and possible applica-
tions �3–9�.

These oscillations are periodic, with an exponentially lo-
calized profile, and as they occur in discrete systems, they
have been termed discrete breathers �DB’s�, in reference to
similar solutions called breathers first discovered in com-
pletely integrable nonlinear wave equations �10�. DB’s be-
long to a class we may call simple periodic orbits of
N-degrees-of-freedom Hamiltonian systems �11�, where all
rotation numbers are equal to unity, such as, e.g., in the case
of nonlinear normal modes of the famous Fermi-Pasta-Ulam
�FPU� problem �12,13�.

Soon after the first developments, the question of the ex-
istence of quasiperiodic and even chaotic breathers arose in
the study of Hamiltonian lattices. In particular, Johansson
and Aubry �14� studied them in the discrete nonlinear
Schrödinger �DNLS� equation, where a second frequency
can be exactly imposed by the factor exp�i�t� multiplying a
DB solution oscillating with frequency �b. A more rigorous
approach was developed later by Bambusi and Vella �15�,
who used Nekhoroshev theory and the anticontinuum limit to
construct quasiperiodic breathers in Hamiltonian systems
possessing some additional integrals independent of the
Hamiltonian. In these cases, it was shown that resonances

with the linear spectrum can be avoided, as it is precisely the
occurrence of such resonances that leads to the delocalization
and eventual collapse of a breather �16,17�.

Chaotic breathers have also been reported in the literature,
primarily in connection with the problem of energy equipar-
tition in FPU lattices �18–21�. In these studies, chaotic
breathers were observed to occur as highly localized struc-
tures, which travel erratically along the whole lattice, until
they eventually collapse due to energy exchange with the
linear modes.

Since resonances with the linear spectrum appear to be so
important to the persistence of localized structures, we
thought that it might be a good idea to examine their impor-
tance indirectly, by considering an example where phonons
are totally absent. We therefore study in this paper a one-
dimensional lattice described by the Hamiltonian

H = �
n
�1

2
u̇n + V�un� +

K

4
�un+1 − un�4� , �1�

which is free from linear dispersion as it involves only quar-
tic nearest-neighbor interactions. This lattice was also stud-
ied by Comte �22�, who showed the existence of “compac-
ton” breathers for a special choice of the on-site potential
V�un� by separating exactly the time and space dependence
of the breather solutions. In fact, Kivshar �23� was the first to
predict the occurrence of such compact structures in the pres-
ence of only anharmonic nearest-neighbor coupling and this
was later confirmed numerically by Tchofo Dinda �24� on a
Klein-Gordon lattice with a quartic on-site potential.
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In the continuum limit, a generalized Konteweg–de Vries
�KdV� equation was used by Rosenau and co-workers �25� to
describe the existence of compact solitons. The substitution
of the linear with a nonlinear dispersion was justified by the
disentanglement of the parameters related with the character-
istic length and nonlinear interactions on the system. The
modified KdV equation proposed by Rosenau was proven to
support compact solitons in the continuum limit. The differ-
ent length scales in the magnetization that appear in aniso-
tropic ferromagnetic systems can affect the balance between
linear and nonlinear dispersion �26�. In the case of an Ising
ferromagnet, the linear dispersion of the Landau-Lifshitz
equation drops to zero and the magnetic solitons compactify.
A mechanical analog, where the linear dispersion is consid-
ered to be very small compared to the nonlinear dispersion,
was also proposed by Dusuel et al. in �27�.

Breathers with an exactly compact profile, however, are
not expected to exist generically. In fact, such structures are
often called “compact like,” as they are commonly found to
obey superexponential decay laws �28�. More recently, Gor-
bach and Flach �29� used Hamiltonian �1�, with the coupling
term in the sum replaced by

K

4ls �
l�0

��un+l − un�4 + �un−l − un�4	 , �2�

to study the effect of long-range interactions on different
breather profiles and showed how compactness can break
down at certain well-defined crossover length scales.

In this paper, we use again the exact separation of the
solutions into the product of a temporal and a spatial part, as
demonstrated in �4,23,29�, to obtain, in Sec. II, DB’s of a
Hamiltonian lattice �1�, whose substrate potential is a “soft”
quartic

V�x� =
1

2
x2 −

1

4
x4. �3�

In cases where the DB’s are linearly unstable, we introduce
an oscillatory modulation in the coefficient of quadratic term
in Eq. �3�, replacing it by 1

2x2�1+� cos��dt��. This periodic
control introduces new parameters in the problem, which can
now be varied accordingly to generate new kinds of breath-
ers and alter their stability properties at will.

As we show in Sec. III, the introduction of such a multi-
plicative driving term does not affect at all the space-time
separability of the equations of motion and hence may be
easily employed to construct DB’s, whose frequencies are
multiples of the driving frequency �d. We may also change
the DB stability properties, by varying the amplitude of the
driving � to force a pair of eigenvalues of the monodromy
matrix to enter �or exit� the unit circle, thus making the DB
stable �or unstable� under small perturbations.

When a DB is stable, we find large regions of initial con-
ditions around it leading to quasiperiodic breathers, which
are observed to be stable for as long as we were able to
integrate the equations of motion. As we explain in Sec. IV,
these represent modulations by a second frequency of the DB
lying at the center of these regions and are characterized by a
clearly discrete spectrum. At some distance from the DB, the

quasiperiodic breathers become unstable, breaking down af-
ter relatively short times, through delocalization and energy
sharing among all particles.

Stable quasiperiodic breathers with similar properties are
also found around the equilibrium position where all par-
ticles are at rest. However, as we move away from this point,
choosing initial conditions on a two-dimensional Poinacaré
map of the temporal motion of each particle, we observe near
the boundary of a major chaotic layer that the quasiperiodic
motion breaks down into chaotic oscillations, which never-
theless remain highly localized. They assume the form of
what we may call a chaotic breather, as the largest amplitude
oscillations begin to wander erratically among a small num-
ber of central particles of the lattice.

These oscillations possess an evidently broad banded
Fourier spectrum and give the impression that the breather
“dances” chaotically over a part of the lattice that never ex-
ceeded ten particles in all our simulations. Thus, our chaotic
breathers differ from those found in the literature �18–21�,
since they do not travel over the full extent of the lattice and,
more importantly, are not seen to collapse through energy
equipartition, for as long as we were able to observe them.
We argue, therefore, that their localization is due to the ab-
sence of resonances with phonons, since our lattices are free
from linear dispersion. In Sec. V, we present similar results
on quasiperiodic breathers starting with different DB profiles
and selecting different parameters of the problem, corre-
sponding to what is referred to as “hard” and “soft” DB’s in
the literature �29�.

Of course, the complete absence of linear dispersion is
rare in realistic systems. What one may encounter, however,
in physical models is linear coupling terms, with a small
coefficient c�0. Thus, in Sec. VI, we introduce such terms
in our equations of motion and show that for sufficiently
small c, stable quasiperiodic breathers around periodic ones
continue to persist for very long times, just as in the c=0
case. Finally, we point out in our Conclusions that the occur-
rence of chaotic breathers is a rather delicate phenomenon, as
their formation depends crucially on how quasiperiodic
breathers destabilize, as we approach a chaotic region of the
low-dimensional dynamics governing the class of Hamil-
tonian lattices studied in this paper.

II. BREATHERS OBTAINED BY COMPLETE SPACE-TIME
SEPARATION

We consider a one-dimensional lattice of coupled nonlin-
ear oscillators with unit mass, described by the Hamiltonian

H = �
n
�1

2
u̇n +

1

2
un

2 −
1

4
un

4 +
K

4
�un+1 − un�4� �4�

�see Eqs. �1� and �3��, where n varies from −� to +� and K
is a positive constant. We point out the absence of quadratic
coupling terms in Eq. �4� and hence the lack of linear dis-
persion in our model. The equation of motion for the nth
oscillator is thus given by

ün = K�un+1 − un�3 + K�un−1 − un�3 − un + un
3. �5�
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It has been shown for this system �4,23,29� that there is a
class of solutions which can be written as a product of a
purely spatial �n-dependent� part and a function of time only
as follows:

un�t� = �nG�t� , �6�

where �n corresponds to the spatial profile of the solution
and G�t� describes its time evolution. This can be easily seen
by substituting Eq. �6� in the equation of motion �5� and
writing it as an equality between an expression that depends
only on n and one that is solely time dependent. Equating
both of these expressions to a constant C, one thus finds that
G�t� satisfies the �autonomous� Duffing equation

G̈ + G = − CG3, �7�

while the spatial part of the solution obeys the second-order
recursion relation

C�n + K��n+1 − �n�3 + K��n−1 − �n�3 + �n
3 = 0. �8�

Note that �8� describes a second-order mapping that can
be solved uniquely for �n+1 and �n+1=�n+1−�n in terms of
�n and �n. In fact, it is invertible, as it can also be solved
uniquely for �n and �n in terms of �n+1 and �n+1. Clearly,
the only thing that matters about C is its sign �since C can be
scaled out�, so we only consider here the cases C=1 and C
=−1 separately. We also fix K=1 everywhere throughout this
paper.

Of course, there are many different kinds of solutions of
the mapping �8� �e.g., fixed points, periodic, etc.� and hence
also of the lattice �6� that one may wish to construct by
combining them with the appropriate solution of Eq. �7�.
Here, we are interested in finding discrete breathers of this
lattice—i.e., spatially localized, time-periodic solutions of a
prescribed frequency �b �2,5,8,9�. One very efficient method
for computing their spatial profile is by finding the ho-
moclinic orbits located at the intersections of the invariant
manifolds of the saddle point at the origin of map �8� as
shown in �30–32�. One may thus select among these orbits
any profile one wishes, having the required symmetry, num-
ber of local extrema, etc. The exact breather solution is then
calculated as the product of this homoclinic orbit with the
periodic solution of Eq. �7� having the desired frequency �b
�29�. Let us choose, for example, one of the simplest such
profiles corresponding to a symmetric breather with a single
central maximum shown in Fig. 1.

We shall first set C=1, which corresponds to the case
where the Eq. �7� has periodic solutions for all initial dis-

placements G�0� and Ġ�0�, as it possesses an everywhere
positive-definite potential. For C=1 the frequency of a peri-
odic solutions is larger than the equilibrium frequency of the
potential ��b��0=V��0�=1� and neighboring particles are
oscillating out of phase �see Fig. 1�. This behavior appears in
systems with hard on-site potential and gives rise to DB’s
called “hard breathers” �29�.

All we have to do now to construct such DB solutions is
choose, on the phase plane of Duffing’s equation, a point

G�0�=D and G�0�˙ =0 corresponding to a periodic orbit with
frequency �b, select a particular homoclinic orbit of the map

�8�, and multiply them to obtain the initial profile un�0�
=D�n of a DB having zero initial velocities and oscillating
with the same frequency. For example, for the breather of
Fig. 1, we plot the evolution of the central particle as a func-
tion of time in Fig. 2�a� and note that increasing D increases
the frequency of the breather, in a manner shown in Fig.
2�b�.

Having shown how to construct exact breathers, we now
come to the question of the stability of their time evolution
under small perturbations of their initial conditions. Since
these solutions are periodic, Floquet analysis can be invoked
to study stability through the calculation of the eigenvalues
of the monodromy matrix �Floquet multipliers� of the asso-
ciated linear variational problem �5,8,9,31,32�. This analysis
reveals, in the case of the profile of Fig. 1, that this breather
is unstable, since it has one pair of monodromy eigenvalues
outside the unit circle, �1�1, �2=1/�1	1. In fact, this in-
stability becomes even stronger for larger D �and larger fre-

FIG. 1. �Color online� The profile �n of a simple breather of the
autonomous system �7� for C=1, K=1.

FIG. 2. �Color online� �a� The time evolution of the central
particle of the breather of Fig. 1. The solid line corresponds to D
=0.1, dashed line to D=0.5, and dot-dashed line to D=1.0 �time in
dimensionless units�. �b� The breather frequency as a function of the
parameter D. �c� The magnitude of the single Floquet multiplier
�1�1 as a function of D.
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quencies�, as seen by the monotonic increase of the magni-
tude of the real Floquet multiplier �1�1, plotted as a
function of D in Fig. 2�c�.

III. CONTROLLING THE STABILITY OF BREATHERS BY
PARAMETRIC DRIVING

The question, therefore, naturally arises: Is it possible to
devise an appropriate control mechanism by which stable
breathers can be found for this system? One way by which
this can be done is to introduce a parametric driving term in
the factor multiplying the harmonic part of the on site poten-
tial of all oscillators. To this end, we propose to add to the
coefficient of the harmonic term of the on site potential �3� a
periodic modulation, thus changing the equation of motion to

ün = K�un+1 − un�3 + K�un−1 − un�3 − �1 − � cos��dt��un + un
3,

�9�

where � and �d represent the amplitude and frequency of the
driver. We have chosen this modification for two reasons:
first because it is physically meaningful, as such a type of
parametric driving can be experimentally implemented, and
second because it does not affect the mathematical property
of having solutions of the type �6�. Thus, separating again the
space and time-dependent parts as before, we observe that
the Duffing equation �7� now becomes

G̈ + �1 − � cos��dt��G = − CG3, �10�

while the spatial profile of the solution can again be con-
structed independently by solving a mapping equation iden-
tical to Eq. �8�. Thus, we can study breather solutions of our

lattice by selecting points G�ti� and Ġ�ti� on the surface of
section of Eq. �10� at times ti=2i
 /�d �i is an integer� and
combining the corresponding solution G�t� with the spatial
profile �n given by Eq. �8�. In Fig. 3, we exhibit a global
picture of the dynamics of such a Poincaré map for �=0.7
and �d=2.6355.

We may choose, for example, a driving frequency �d
equal to a multiple of the desired frequency of the breather

�b, �d=k�b �k is an integer�, and look for that breather at the
center of a chain of k islands, on the surface of section of
Fig. 3. As is evident from this figure, there are two big is-
lands corresponding to a resonance of twice the period �and
half the frequency� of the driving, whose centers are located
at the points Dc= ±1.2043 on the horizontal axis. They cor-
respond to a period-2 orbit of the Poincaré map and hence
provide initial amplitudes for DB’s oscillating with �b
=2�d. Clearly, the origin of the figure at �0,0� is an equilib-
rium point of Eq. �10�, where the lattice is at rest. Two in-
teresting questions arise therefore with respect to this figure.

�i� What type of lattice oscillations do we obtain if we
choose our initial conditions on one of the quasiperiodic or-
bits of Eq. �10� encircling the origin or one of the period-2
points? Do they lead to some form of quasiperiodic breathers
and are these stable under small perturbations in their time
evolution?

�ii� What about initial conditions chosen within the cha-
otic layer surrounding the origin in Fig. 3? Can they yield
some form of chaotic breathers?

To find out, let us start by choosing a point at the center of
the two large islands of Fig. 3 as an initial value for the
lattice displacements and construct a DB with �b=2�d, us-
ing the �n profile of Fig. 1. In particular, we take as our
starting point the center of the island on the right, �D ,0�,
whence the initial conditions for our lattice are un�0�=D�n

and u̇n�0�=0. Using Newton’s method, we now calculate the
exact DB for the lattice and compute its Floquet multipliers.
We have used throughout this paper a lattice of N=32 par-
ticles, which is quite sufficient for our calculations, as shown
clearly by the picture of Fig. 1.

In the limit �=0 we have already seen that this breather is
unstable with a single pair of Floquet multipliers lying out-
side the unit circle. Increasing �, however, we observe that
the breather undergoes a codimension-1 bifurcation: The two
real multipliers move towards the unit circle and as � be-
comes larger than some critical value �c they enter the unit
circle and the breather becomes stable. Thus, using this form
of periodic driving control is possible and the breather is
stabilized. The magnitudes and arguments of the Floquet
multipliers �i closest to +1 are shown in Fig. 4, for C=1 and
�d=2.6355. The critical value of the driving in this case is
�c=0.6675.

IV. QUASIPERIODIC AND CHAOTIC BREATHERS

We have thus discovered that, when ���c, a stable peri-
odic breather is obtained starting from the center of the big
island on the right of Fig. 3, �Dc ,0�. Suppose now that we
perturb this initial condition by placing our starting point at a
distance G�0�=D=Dc−�, ��0, away from the center of the
island �always with zero initial velocities�, with � small
enough that D remains inside the island. What about the
corresponding solutions of the lattice? We may expect that
for small � they will have the form of quasiperiodic breathers
and also be stable for two reasons: They lie on tori of qua-
siperiodic motion around a stable periodic orbit of an
N-degrees-of-freedom Hamiltonian system �11� and are free
from phonon resonances due to the absence of linear disper-

FIG. 3. Poincaré surface of section for Duffing’s equation with
parametric driving �=0.7 and �d=2.6355.
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sion. But how far can we go from the center of the island
before the dynamics becomes unstable?

To answer these questions, we vary G�0�=D and observe
indeed the occurrence of stable quasiperiodic breathers, until
D reaches approximately half the distance between the center
and the edge of the island on the Poincaré map. For example,
with �=0.7, the center of the island is located at Dc
=1.204 368 and its edge is formed by a chaotic layer cross-
ing the positive horizontal axis at about Ds=0.313 739. Us-
ing as initial conditions for the lattice un=D�n with D
�0.80, we find quasiperiodic breathers which remain stable
for very-long-time simulations. In Figs. 5�a� and 5�b� we plot
the oscillations of the central particle for the DB with �b
=2�d �D=Dc� and a quasiperiodic breather with D=0.8, re-
spectively. We also find the frequencies involved in the mo-

tion of this particle using the Fourier transform �Figs. 5�c�
and 5�d�, respectively�. Note the presence of a single fre-
quency in the spectrum of Fig. 5�a� plotted in Fig. 5�c� and
the occurrence of a discrete spectrum for the quasiperiodic
breather of Fig. 5�b� plotted in Fig. 5�d�. When D	0.80,
however, the quasiperiodic breather becomes unstable, in the
sense that it is numerically seen to collapse after relatively
short times.

Stable quasiperiodic breathers with smaller amplitude can
also be observed if the initial condition is placed inside the
central island around the origin of Fig. 3. However, starting
again with initial conditions �D ,0� and moving to the right of
D=0, we do not find that the quasiperiodic breather destabi-
lizes in the same manner as described above. Instead, when
we are very close to the chaotic layer joining the two saddle
points of the �unstable� period 2 on the D=0 axis of Fig. 3,
the breather becomes chaotic. Indeed, as we show in Figs. 6
and 7, starting with D=0.313, the energy of the central par-
ticle of the breather, located initially at the site n=15, starts
to wander to nearby positions, while the total energy remains
localized between the sites n=10 and n=20. The fact that the
oscillations are truly chaotic is evidenced by the Fourier
spectrum of the n=15 particle, for example, which is shown
in Fig. 6�c� to exhibit a clearly broadbanded part.

In fact, following the oscillations of this breather in time
we observe that it “dances” chaotically in space, as the loca-
tion of its maximum amplitude shifts unpredictably from the
left to the right of the center particle at n=15 and vice versa
�see Fig. 7�. We emphasize that for as long as we have been
able to follow its evolution, the oscillations remained local-
ized within a small number of particles around the center
�between n=10 and n=20�, while the rest showed very little
appreciable movement.

Varying the frequency and/or the strength of the paramet-
ric driving, one can, of course, find additional stable periodic
breathers, whose initial conditions lie at the centers of is-
lands with higher periodicity. As an example, we mention

FIG. 4. �Color online� �a�The magnitude of the two real Floquet
multipliers �1 ,�2 becomes 1 by an inverse bifurcation as � exceeds
the value �c=0.6675. �b� The arguments �i of the Floquet multipli-
ers �i closest to +1, as functions of the parametric driving �.

FIG. 5. �Color online� �a� Time evolution of the central breather
particle u0�t� in the center of the island for D=1.2043. �b� The
stable quasiperiodic breather inside the island for D=0.8. �c� The
Fourier transform of u0�t� for the stable breather when D=1.2043.
�d� The Fourier transform of u0�t� for the quasiperiodic breather
when D=0.8. We have used a lattice of N=32 particles with the
parameter values �=0.7, �d=2.6355, and C=K=1 �time in dimen-
sionless units�.

FIG. 6. �Color online� Evidence of a chaotic breather with the
initial profile of Fig. 1 and initial conditions �0.313,0� in Fig. 3. �a�
Time evolution of the central particle n=15 and �b� its first neighbor
n=16. �c� The Fourier transform of �a� shows parts that are clearly
broad banded. �d� The energy of the breather in this experiment is
seen to be located also for long times in the second neighbor n
=17. The lattice parameters are as in Fig. 5 �time in dimensionless
units�.
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that for �d=4.8 and �=0.5, one finds that there is a group of
four islands on a surface of section similar to that of Fig. 3:
The center of each island is on one of the main axes, two at
y=0 and x= ±D and two at x=0 and y= ±D, with D
=0.7526. Using any one of these as a starting point together
with the �n values of Fig. 1, we find a stable periodic
breather with frequency �=1.2=�d /4, as expected. Small
deviations from the center of these islands lead to quasiperi-
odic breathers.

V. BREATHERS WITH A DIFFERENT SPATIAL PROFILE

A. Hard breathers

The breather profile we have studied so far, shown in Fig.
1, is often called “hard” due to the fact that C=1 in Eq. �7�

corresponds to a G�t� potential that is everywhere positive
definite. It is also “even” �or symmetric� with respect to the
central particle. It would therefore be interesting to carry out
a similar investigation for a different spatial profile—for ex-
ample, one that is “odd” or antisymmetric, with respect to the
central particle. In Fig. 8 we plot the spatial profile �n of
such a breather.

Using Floquet stability analysis we find that this configu-
ration is in fact linearly stable in the absence of parametric
driving. When we introduce the driving, the mode remains
stable if the amplitude of the forcing term � remains smaller
than some critical value �c. For example, taking as the fre-
quency of the driver �d=2.6355, we find that this critical
value is �c=0.822. To see this, we plot in Fig. 9 the magni-
tude and argument of the Floquet multipliers ��i=ie

i�i� as a
function of the amplitude � of the driving force. Comparing
with Fig. 4, we see that a “forward” bifurcation takes place
here, as two multipliers become real for ���c=0.822, with
�1�1 being responsible for the breather’s instability. From
these two figures we also conclude that there is an interval of

FIG. 7. �a� Three-dimensional time evolution of the chaotic
breather for 0	 t	1500. �b� Three-dimensional time evolution of
the chaotic breather for 11 000	 t	12 500. �c� Three-dimensional
time evolution of the chaotic breather for 14 000	 t	16 000 �time
in dimensionless units�.

FIG. 8. �Color online� The breather profile �n of an antisym-
metric breather for C=1 and K=1.

FIG. 9. �Color online� The amplitude i �a� and the argument �i

�b� of the Floquet multipliers of the antisymmetric breather as a
function of the driver’s amplitude �. The parameters are C=1, K
=1, and �d=2.6355.
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forcing amplitudes 0.6675	�	0.822 where both symmetric
and antisymmetric breathers are stable.

Using now the spatial profile �n of the antisymmetric
breather of Fig. 9 and �D ,0� from Fig. 3 to form the initial
conditions for the lattice, un�0�=D�n and u̇n�0�=0, we inte-
grate numerically the equations of motion �9� and follow the
solutions �6� for long times. If we choose �=0.7 and D
=1.204 368, at the center of the islands, then the solution
yields a stable DB. Small deviations from this point lead
again to stable quasiperiodic breathers as in the symmetric
case of the previous section. Moving away from the center of
the island towards �0,0�, these quasiperiodic oscillations
cease to be localized and become unstable when D reaches
the critical value Dc=0.874. Comparing this critical value
with the one of the symmetric breather �which is Dc=0.8�,
we conclude that the size of the regions corresponding to
stable quasiperiodic breathers is smaller for the antisymmet-
ric breather of Fig. 8 than it is for the symmetric one of
Fig. 3.

B. Soft breathers

We can perform exactly the same investigation as above
in the case of a lattice with “soft” breathers by setting C=
−1 in the Duffing equations �7� and �10�, as well as the
mapping �8�, which now yields the symmetric breather pro-
file shown in Fig. 10.

Thus, either solving for the homoclinic orbits of Eq. �8� or
starting with an approximation of the breather profile of Fig.
10 and using Newton’s method to converge to the exact so-
lution �3�, we were able to find stable soft breathers, with
frequency �b=0.95, choosing initial conditions at the centers
of the big islands of Fig. 11, which represents the surface of
section of Eq. �10� for �d=1.9 and C=−1 �see also Fig. 3�.
The behavior of the Floquet multipliers as functions of the
amplitude of the periodic forcing � is shown in Fig. 12. Be-
ginning with perturbations around the period-2 points yields
again stable quasiperiodic breathers up to relatively large dis-

tances away from the centers of the island, as in the case of
the hard breathers with C=1 described above.

Interestingly enough, the quasiperiodic orbits observed in
this case appear to be stable even for initial conditions cho-
sen close to the separatrix around the origin of Fig. 11. In
fact, even when we chose D=0.35 and D=0.2, the breather
was stable for as long as we could integrate, with oscillations
whose envelope exhibits long period modulations �see Figs.
13�b� and 13�c�� and a discrete Fourier spectrum, whose
main part is concentrated around the frequency �b=0.95 of
the DB of Fig. 13�a� �see Figs. 13�d�–13�f��.

Finally, if we select initial conditions with even smaller
value of D, closer to the chaotic layer encircling the origin of
Fig. 11, we eventually find unstable quasiperiodic breathers,
which become delocalized after relatively short time periods.
A similar situation holds if we approach the chaotic layer
starting from �0,0�. Even though we performed detailed com-
putations, taking small increments in our D values, we were
not able to find chaotic breathers for C=−1, as we did in the

FIG. 10. �Color online� The soft breather profile �n for C=−1
and K=1.

FIG. 11. The Poincaré map of the parametrically driven Duff-
ing’s equation �10�, with �=−0.1, �d=1.9, C=−1, and K=1. The
center of the right big island is at D=0.4435.

FIG. 12. �Color online� �a� The magnitudes and �b� the argu-
ments of the Floquet multipliers �i, i=1,2 , . . ., of the soft breather
as functions of the amplitude of the periodic forcing �, as they
bifurcate off the unit circle at �	�c=−0.2, with �d=1.9.
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C=1 case. In all our experiments with soft solutions, the
quasiperiodic breathers become unstable when we reach the
chaotic layer and localization was lost without the formation
of chaotic breathers.

VI. EFFECT OF LINEAR DISPERSION

Evidently, the absence of linear dispersion in our system
appears to be responsible for the existence and stability of
quasiperiodic and chaotic breathers since the linear modes
have zero group velocity and have all the same frequency
�i.e., the rest frequency of the on-site potential� and hence
cannot propagate energy. Therefore, to further study their
effect on the localization phenomena we have observed, let
us introduce a small harmonic term in the interaction poten-
tial, Vc�x�=cx2 /2, due to which a band of linear modes is
formed with the usual dispersion relation and nonzero group
velocity �2�q�=�0

2+4c sin2�q /2� ��0=1 is the rest frequency
of the on-site potential V�.

This means that if any of the harmonics of the breather
frequencies lie within this band, energy will be dissipated
through phonons and the breather will decay. In the case of a
quasiperiodic breather there are at least two characteristic
frequencies ��1 and �2, which are intrinsic to the breather�.
Since these two frequencies are incommensurate, there will
exist internal frequencies of the breather of the form �
=n1�1+n2�2 with n1 and n2 integers, which will lie within
the phonon band causing the breather to lose energy. The rate
at which this will happen will be lower for large n1 and n2
�since the equivalent Fourier coefficients of the breather will
also be very small�. Of course, for a very narrow phonon

band and for breather frequencies close to each other, the
integer numbers n1 and n2, which produce a frequency �
inside the band will be very large, and therefore, the quasi-
periodic breather is expected to have a very large lifetime.

In Fig. 14 we show the time evolution and the Fourier
transform of the central particle of the hard quasiperiodic
breather in the presence of weak linear dispersion. The am-
plitude and the frequency of the parametric driver are the
same as in Fig. 5. A small linear term Vc has been included in
the nearest-neighbor interaction, and the coupling parameter
is c=0.07. Clearly, because of the linear interaction, we can
no longer separate the spatial and temporal parts of the so-
lution, but the exact periodic breather can be calculated nu-
merically using Newton’s method. Small excitations around
this periodic solution are then found to lead to solutions with
quasiperiodic behavior which persists for very long times
�t�105�. As can be seen in Fig. 14, after t=1.2�105 time
units the quasiperiodic breather still shows no visible loss of
energy.

Even though in the presence of a linear interaction the
spatial and temporal components of the solution cannot be
exactly separated, for very small coupling strength c�0 we
can still describe the behavior of the system in terms of two-
dimensional phase-space maps of Eq. �10�. An exact periodic
breather is again found to exist at the center of the island,
with frequency �b=�d /nd �where nd is the rotation number
corresponding to the island�.

As shown in Fig. 15, the linear stability of the breather at
the center of the island is preserved for nonzero values of the
parameter c. As the coupling increases, however, the Floquet
multipliers collide with each other on the unit circle and
instabilities appear. The first such instability though appears
for a relatively large value of the coupling �i.e., c=0.09�. It is
also interesting to note that if the central periodic breather of

FIG. 13. �Color online� The time evolution and the Fourier
transform of the central breather particle for �=−0.1 and �d=1.9.
Upper panels: �a� Periodic breather with initial condition D
=0.4435 at the center of the right big island of Fig. 11. �b� Quasi-
periodic breather with D=0.35. �c� Quasiperiodic breather with D
=0.2, close to the separatrix of Fig. 11. Lower panels: �d� Fourier
transform of �a�. �e� Fourier transform of �b�. �f� Fourier transform
of �c�. �time in dimensionless units�.

FIG. 14. The temporal evolution and Fourier transform of the
quasiperiodic hard breather in the presence of weak linear disper-
sion with c=0.07, �=0.7, and �d=2.6355 �time in dimensionless
units�. �a� The temporal evolution of the central particle of the
breather. �b� The Fourier transform of the evolution of the central
particle �the dashed lines indicate the location of the phonon band�.
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Figs. 14 and 15 in the absence of parametric driving is un-
stable, we can use the parametric driver to realize its stabili-
zation. Thus, we believe that the results of this paper can be
used in more general situations to produce stable periodic
and quasiperiodic breathers in systems where the linear dis-
persion terms are small enough.

VII. CONCLUSIONS

In this paper, we have studied breather dynamics in a
one-dimensional lattice with only quartic nearest-neighbor
interactions—i.e., in the absence of linear dispersion terms.
Our goal was to study the properties of the lattice when there
is no phonon spectrum to cause the breakdown of breathers
via the mechanism of resonances with linear coupling terms.
Our main result is that, in the absence of such terms, local-
ization is indeed a robust property, as quasiperiodic and even
chaotic breathers are observed to remain spatially localized,
for as long as we were able to integrate the equations of
motion.

We have characterized our breathers as quasiperiodic or
chaotic depending on whether their Fourier spectrum is, re-
spectively, discrete or broadbanded. In fact, we have ob-
served in all our investigations a strong resemblance of the
infinite-dimensional lattice with what one expects from a

Hamiltonian system with only a finite number of degrees of
freedom. This is, of course, not surprising, as in all our so-
lutions only a very small part of the lattice is seen to take
part in the dynamics. Thus, we may think of DB’s as simple
periodic orbits of an N-degrees-of-freedom Hamiltonian, sur-
rounded by N-dimensional tori, on which the motion remains
confined, forever, since there are no phonon resonances to
destroy them.

Their localization in space strongly suggests that they
share the topological properties of the central DB about
which they oscillate and that the full dynamics actually oc-
curs on a very-low-dimensional part of the 2N-dimensional
phase space. This is further supported by the fact that even
the chaotic regions in that subspace are of low dimensional-
ity as they are seen to contain chaotic motion which is lim-
ited to a very small number of particles for very long times.

To date, a number of realistic lattice systems have been
reported in the literature �25–27�, where the nonlinear dis-
persion is dominant and the linear dispersion is very small,
and which can be considered as being nearly free from linear
dispersion. For this reason, we investigated in Sec. VI of this
paper the effect of adding a small linear dispersion term to
our lattices. We were thus able to demonstrate that, for small
enough values of the linear coupling coefficient c�0 and
long enough times, stable periodic breathers with large re-
gions of stable quasiperiodic breathers around them still ex-
ist, with properties that can be controlled by methods very
similar to the ones we used in the c=0 case.

Finally, it would be important to examine the effect of
long-range interactions on such quasiperiodic and chaotic
breathers, as has been recently done for the DB solutions of
these lattices �29�. Thus, one would be able to test whether
there also exist similar characteristic crossover lengths de-
stroying localization of quasiperiodic and chaotic oscillations
and compare the results with analogous phenomena observed
in the case of localized periodic oscillations.
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